174 research outputs found

    Anomalous temperature behavior of resistivity in lightly doped manganites around a metal-insulator phase transition

    Full text link
    An unusual temperature and concentration behavior of resistivity in La0.7Ca0.3Mn1xCuxO3La_{0.7}Ca_{0.3}Mn_{1-x}Cu_xO_3 has been observed at slight CuCu doping (0x0.050\leq x \leq 0.05). Namely, introduction of copper results in a splitting of the resistivity maximum around a metal-insulator transition temperature T0(x)T_0(x) into two differently evolving peaks. Unlike the original CuCu-free maximum which steadily increases with doping, the second (satellite) peak remains virtually unchanged for x<xcx<x_c, increases for xxcx\ge x_c and finally disappears at xm2xcx_m\simeq 2x_c with xc0.03x_c\simeq 0.03. The observed phenomenon is thought to arise from competition between substitution induced strengthening of potential barriers (which hamper the charge hopping between neighboring MnMn sites) and weakening of carrier's kinetic energy. The data are well fitted assuming a nonthermal tunneling conductivity theory with randomly distributed hopping sites.Comment: 10 REVTEX pages, 2 PostScript figures (epsf.sty); to be published in JETP Letter

    A phenomenological model for the pressure sensitivity of the Curie temperature in hole-doped manganites

    Full text link
    We performed high pressure experiments on La(0.8)Ca(0.2-x)Sr(x)MnO(3) (LCSMO) (0<x< 0.2) ceramic samples in order to analyze the validity of the well known relation between the A mean ionic radius () and the Curie temperature Tc of hole-doped manganites at a fixed doping level and for doping values below the 0.3 (Mn+4/Mn+3) ratio. By considering our results and collecting others from the literature, we were able to propose a phenomenological law that considers the systematic dependence of Tc with structural and electronic parameters. This law predicts fairly well the pressure sensitivity of Tc, its dependence with the A-cation radius disorder and its evolution in the high pressure range. Considering a Double Exchange model, modified by polaronic effects, the phenomenological law obtained for Tc can be associated with the product of two terms: the polaronic modified bandwidth and an effective hole doping.Comment: 5 pages, 7 figures, corresponding author: C. Acha ([email protected]

    Features of the crystal structure and electrical properties of sodium chloride at pressure 20-50 GPa

    Full text link
    The electrical properties of polycrystalline samples of sodium chloride are studied at direct and alternating current in a wide range of frequencies at high pressure and room temperature. Graphic analysis of the experimental data [1-3] in the view of equivalent circuits allowed us to separate the contributions to conductivity caused by grains and intergrain boundaries. Features of impedance at pressure up to 37 GPa are in good agreement with earlier data and structural changes. It is shown that in the studied materials the electrical resistance of grains is much greater than the resistance of intergrain boundaries. © 2013 Allerton Press, Inc

    Metal-insulator transition in manganites: mixture of oxygen isotopes versus magnetic field

    Full text link
    We have investigated the effect of oxygen isotope substitution on the metal-insulator transition temperature and the resistivity of the narrow band manganite (La0.25Pr0.75)0.7Ca0.3MnO3 in a constant magnetic field. A set of 16 samples having different mixtures of 16O, 17O and 18O isotopes with average mass varying from 16.0 to 17.8 a.m.u. was studied. We have found that the magnetoresistance and the isotope effect can be linked together with a single parameter - effective magnetic field, which decreases linearly with an increase of average oxygen mass with a slope of -2 T/a.m.u. The applicability of the small polaron model is discussed.Comment: Submitted to Moscow International Symposium on Magnetism MISM'0

    Modification of the ground state in Sm-Sr manganites by oxygen isotope substitution

    Full text link
    The effect of 16^{16}O \to 18^{18}O isotope substitution on electrical resistivity and magnetic susceptibility of Sm1x_{1-x}Srx_xMnO3_3 manganites is analyzed. It is shown that the oxygen isotope substitution drastically affects the phase diagram at the crossover region between the ferromagnetic metal state and that of antiferromagnetic insulator (0.4 <x<< x < 0.6), and induces the metal-insulator transition at for xx = 0.475 and 0.5. The nature of antiferromagnetic insulator phase is discussed.Comment: 4 pages, 3 eps figures, RevTeX, submitted to Phys. Rev. Let

    Metal-insulator transition induced by 16O -18O oxygen isotope exchange in colossal negative magnetoresistance manganites

    Get PDF
    The effect of 16O-18O isotope exchange on the electric resistivity was studied for (La(1-y)Pr(y))0.7Ca0.3MnO3 ceramic samples. Depending on y, this mixed perovskite exhibited different types of low-temperature behavior ranging from ferromagnetic metal (FM) to charge ordered (CO) antiferromagnetic insulator. It was found that at y=0.75, the substitution of 16O by 18O results in the reversible transition from a FM to a CO insulator at zero magnetic field. The applied magnetic field (H >= 2 T) transformed the sample with 18O again to the metallic state and caused the increase in the FM transition temperature Tc of the 16O sample. As a result, the isotope shift of Tc at H = 2 T was as high as 63 K. Such unique sensitivity of the system to oxygen isotope exchange, giving rise even to the metal-insulator transition, is discussed in terms of the isotope dependence of the effective electron bandwidth which shifts the balance between the CO and FM phases.Comment: 5 pages (RevTeX), 2 eps figures included, to appear in J. Appl. Phys. 83, (1998

    Identification of problem criteria within the framework of product manufacturing optimization

    Full text link
    This article is aimed at determining the criteria for the problem of production of couplings in multistage production at the enterprise. The purpose of system engineering, the initial stages of the life cycle of the system from the point of view of system engineering are described. The analysis of the coupling production system by the method of "black box" modeling is carried out, the input and output data of this production are also described

    Theory of Insulator Metal Transition and Colossal Magnetoresistance in Doped Manganites

    Get PDF
    The persistent proximity of insulating and metallic phases, a puzzling characterestic of manganites, is argued to arise from the self organization of the twofold degenerate e_g orbitals of Mn into localized Jahn-Teller(JT) polaronic levels and broad band states due to the large electron - JT phonon coupling present in them. We describe a new two band model with strong correlations and a dynamical mean-field theory calculation of equilibrium and transport properties. These explain the insulator metal transition and colossal magnetoresistance quantitatively, as well as other consequences of two state coexistence

    Nanoscale phase separation in manganites

    Full text link
    We study the possibility of nanoscale phase separation in manganites in the framework of the double exchange model. The homogeneous canted state of this model is proved to be unstable toward the formation of small ferromagnetic droplets inside an antiferromagnetic insulating matrix. For the ferromagnetic polaronic state we analyze the quantum effects related to the tails of electronic wave function and a possibility of electron hopping in the antiferromagnetic background. We find that these effects lead to the formation of the threshold for the polaronic state.Comment: 10 pages, 2 figures, invited talk on the workshop on Strongly Correlated Electrons in New Materials (SCENM02), Loughborough (UK). submitted to Journal of Physics A: Mathematical and Genera
    corecore